skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ryu, Jaehyeon"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available December 1, 2026
  2. Free, publicly-accessible full text available August 1, 2026
  3. Abstract Techniques to study brain activities have evolved dramatically, yet tremendous challenges remain in acquiring high-throughput electrophysiological recordings minimally invasively. Here, we develop an integrated neuroelectronic array that is filamentary, high-density and flexible. Specifically, with a design of single-transistor multiplexing and current sensing, the total 256 neuroelectrodes achieve only a 2.3 × 0.3 mm2area, unprecedentedly on a flexible substrate. A single-transistor multiplexing acquisition circuit further reduces noise from the electrodes, decreases the footprint of each pixel, and potentially increases the device’s lifetime. The filamentary neuroelectronic array also integrates with a rollable contact pad design, allowing the device to be injected through a syringe, enabling potential minimally invasive array delivery. Successful acute auditory experiments in rats validate the ability of the array to record neural signals with high tone decoding accuracy. Together, these results establish soft, high-density neuroelectronic arrays as promising devices for neuroscience research and clinical applications. 
    more » « less
  4. Abstract Silicone‐based devices have the potential to achieve an ideal interface with nervous tissue but suffer from scalability, primarily due to the mechanical mismatch between established electronic materials and soft elastomer substrates. This study presents a novel approach using conventional electrode materials through multifunctional nanomesh to achieve reliable elastic microelectrodes directly on polydimethylsiloxane (PDMS) silicone with an unprecedented cellular resolution. This engineered nanomesh features an in‐plane nanoscale mesh pattern, physically embodied by a stack of three thin‐film materials by design, namely Parylene‐C for mechanical buffering, gold (Au) for electrical conduction, and Poly(3,4‐ethylenedioxythiophene)‐poly(styrenesulfonate) (PEDOT:PSS) for improved electrochemical interfacing. Nanomesh elastic neuroelectronics are validated using single‐unit recording from the small and curvilinear epidural surface of mouse dorsal root ganglia (DRG) with device self‐conformed and superior recording quality compared to plastic control devices requiring manual pressing is demonstrated. Electrode scaling studies from in vivo epidural recording further revealed the need for cellular resolution for high‐fidelity recording of single‐unit activities and compound action potentials. In addition to creating a minimally invasive device to effectively interface with DRG sensory afferents at a single‐cell resolution, this study establishes nanomeshing as a practical pathway to leverage traditional electrode materials for a new class of elastic neuroelectronics. 
    more » « less